

Citywide/Open Waters

CSO Long Term Control Plan

Public Meeting
Harlem River/Tibbetts Brook

October 2, 2019

Agenda

	Topic	Speaker
1	Welcome & Introduction	Mikelle Adgate
2	Summary of Water Quality & Existing Grey Projects	Keith Mahoney
3	Overview of Demand Management and Tibbetts Brook Daylighting Projects	Pinar Balci
4	Next Steps	Mikelle Adgate

Welcome & Introduction

Mikelle Adgate Senior Policy Advisor DEP

What is a Combined Sewer Overflow (CSO)?

➤ NYC's sewer system is approximately 60% combined, which means it is used to **convey both sanitary and storm flows**.

- ▶ 65% to 90% of combined sanitary & storm flow is captured at wastewater resource recovery facilities (WRRF).
- When the sewer system is at full capacity, a diluted mixture of rain water and sewage may be released into local waterways. This is called a combined sewer overflow (CSO).

What is a LTCP and CSO Consent Order?

Long Term Control Plan (LTCP)

identifies appropriate CSO controls to achieve applicable water quality standards

consistent with the Federal CSO Policy and Clean Water Act

CSO Consent Order

an agreement between NYC and DEC that settles past legal disputes without prolonged litigation

DEC requires DEP to develop LTCPs and mitigate CSOs

Citywide/Open Waters LTCP

- Waterbody-specific CSO evaluation of Open Waters:
 - Harlem River
 - Upper and Lower New York Bay
 - East River/Long Island Sound
 - Hudson River
 - Arthur Kill and Kill Van Kull
- Citywide/Open Waters LTCP will be submitted to DEC in March 2020

Summary of Water Quality & Existing Grey Projects

Keith Mahoney, PE Senior Director DEP

Harlem River – Fecal Coliform

Â

Scale (# col/100 mL)

Sampling Results at a Glance

Sampling Details

Sampling		#	# Samples		
	Period (2016)	Locations	Dry	Wet	
LTCP	Apr 27 – Jun 9 Nov 16 – Nov 19	6	8	38	
HSM	Jan 4 – Nov 9	1	12	15	
SM	Mar 8 – Oct 19	4	3	1	

Note: Wet weather sampling conducted when Wards Island WRRF was not at 2xDDWF wet weather capacity due to construction.

Harlem River - Enterococcus

Sampling Results at a Glance

WI-057

Harlem River

HAR-3

HAR-1

H3 ♥WI-046

HAR-5

All Weather

Scale (# col/100 mL)

Sampling Details

	Sampling	#	# Samples		
	Period (2016)	Locations	Dry	Wet	
LTCP	Apr 27 – Jun 9 Nov 16 – Nov 19	6	8	38	
HSM	Jan 4 – Nov 9	1	12	15	
Riverkeeper	May 1 – Oct 31	2	5	1	
Citizen	May 1 – Oct 31	5	7	13	

Note: Wet weather sampling conducted when Wards Island WRRF was not at 2xDDWF wet weather capacity due to construction

Dry Weather Data
Wet Weather Data
Dry Weather Geomean
Wet Weather Geomean

Harlem River – Dissolved Oxygen

HAR-3

Harlem River

S55

S56 C

H3 WI-046

S57

HAR-5

S55

H3 ♥WI-046

S57

HAR-5

HAR-3

Harlem River

Sampling Details

	Sampling	#	# Samples		
	Period (2016)	Locations	Dry	Wet	
LTCP	Apr 27 – Jun 9 Nov 16 – Nov 19	6	8	38	
HSM	Jan 4 – Nov 9	1	20	30	

Note: Wet weather sampling conducted when Wards Island WRRF was not at 2xDDWF wet weather capacity due to construction.

Baseline Grey Infrastructure Projects

Wards Island WWTP Upgrades

- \$13.7 M Replace Bar Screens at Bronx and Manhattan Grit Chambers
 [Completed January 2017]
- \$5.3 M Reconstruction of Six (6) Main Sewage Pumps
 [Completed August 2019]
 - During construction wet weather flow capacity was reduced
 - Full wet weather flow capacity was restored with the completion of this work

Overview of Demand Management and Tibbetts Brook Daylighting Projects

Pinar Balci, PhD Assistant Commissioner DEP

Harlem River Baseline Green Infrastructure Projects

- Public Property Retrofits
- Private Property Incentives
- Stormwater Rules
- Demand Management Project
- Tibbetts Brook Daylighting Project

GI Commitment is to capture 1.67B gallons of CSO Citywide by 2030

Demand Management Project

Central Park Jackie Onassis Reservoir Recirculation Project

- 0.83 MGD of potable water savings
- CSO reduction of <u>about 4 MG/yr</u> to the East River

Tibbetts Brook – Proposed Alternatives

Summary of Alternatives CSO Reduction Option Description								'	Closed	Open Channel
		CSO Reduction (MG/year)	Cost Estimate (\$M)	CSO Reduced \$/gal	Need Siphons	Maintenance Requirements			Open Channel Flow (cfs)	Channel Dimensions Open Channel Cross Section
1	Base Flow Daylighting I w/ Van Cortlandt Lake Improvements	156 202	55 I 60	0.35 0.30	No	Low	Low	Medium	Up to 14	3']
2	Base Flow Daylighting w/ Van Cortlandt Lake Improvements and Additional Storm Flow	228	63	0.28	No	Low	Low/ Moderate	Medium	Up to 31	3.5
3	Base Flow Daylighting with Parallel Pipe for Full Flow	282	90	0.32	Yes	High	Low	Severe	Up to 14 (203 in parallel pipes)	5' 10' 5' 10'
4	Full Flow Daylighting	282	N/A	N/A	Yes	High	High	Very Severe	Up to 217	5' S-yr flow Base Flow 6" 17'

Option 2 – Open Channel

Tibbetts Brook – Proposed Alternative

Tibbetts Brook - Intake

The proposed alternative would divert flow from a tunnel which connects an existing weir structure in Van Cortlandt Lake to the Broadway Sewer

Tibbetts Brook – Potential Tie-in Location

The new sewer will tie into the tide gate chamber of Regulator 67, downstream of the tide gates and discharge through outfall WI-056

Proposed Improvements at Van Cortlandt Lake

- Modify the downstream overflow weir to include a low flow orifice, which would create a foot of dynamic storage at the top of the lake (volume of 13 acre-feet)
- Construct new weir structure between Upper Basin and Van Cortlandt Lake to maintain existing water surface elevation of Upper Basin and protect high-value wetland

Overflow weir structure

Entrance to collection system

Advantages of Improvements at Van Cortlandt Lake

- Minimal land disturbance (excavation or fill) would be required – primarily modifications to existing structures
- Creating dynamic storage without altering overall hydrology
- An additional 0.85 acre of wetland plantings would be created, diversifying shoreline, improving water quality, and potentially broadening flora and fauna

Proposed Improvements at Van Cortlandt Lake

Next Steps

Mikelle Adgate Senior Policy Advisor DEP

Citywide/Open Waters LTCP Public Outreach

Additional Information & Resources

- ➤ Visit the DEP Website for more information: www.nyc.gov/dep/ltcp
 - Monthly Updates on the Citywide LTCP
 - Citywide LTCP Content: sampling information, baseline information etc.
 - CSO Order including LTCP Goal Statement
 - Links to Waterbody/Watershed Facility Plans
 - Presentations, Meeting Materials and Meeting Summaries
 - LTCP Brochure and Waterbody Fact Sheets
 - All Submitted LTCP Reports and Other LTCP Updates
 - NYC's Green Infrastructure Reports and Grant Program
 - Green Infrastructure Interactive Map of Projects
 - NYC Waterbody Advisory Program
 - Upcoming Meeting Announcements